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Abstract In this paper, we provide a review of recent results in the design of distributed model predictive
control (DMPC). DMPC not only inherits the advantage of model predictive control but also has character-
istics of distributed control framework. We review the work on DMPC from two aspects: unconstrained
DMPC and the design methods of stabilized DMPC with constraints. Finally, some proposed algorithms

are illustrated through two industrial processes.
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1 Introduction

The cyber-physical systems (CPSs) refer to a new generation system with integrated computational and
physical capabilities that can interact with humans through many modalities [1]. One of the three charac-
teristics of CPSs [ 2] is that the CPSs are a system of systems which consist of many subsystems that can
stand alone in an individual manner. Among those subsystems, there are novel interactions between con-
trol, communication, and computation. In this way, the structure of the global system is a classical dis-
tributed one,

For this class of large scale systems with hundreds or thousands of input and output variables (e. g. ,
power and energy network, transportation system, and large chemical processes, etc. ), it is often imprac-
tical to apply the classical centralized MPC, where a control agent is able to acquire the information of the
global system and could obtain a good global performance. to large scale systems for three reasons: first,
there are hundreds of inputs and outputs which require tremendous computational efforts in online imple-
mentation; second, when the centralized controller fails, the entire system is out of control and the control
integrity cannot be guaranteed if a control component does not work; third, in some cases, e. g. in multi
intelligent vehicle system, the global information is unavailable to any controller. Thus, the disturbed
model predictive control appeared and has gradually substituted the centralized MPC.

The distributed Predictive not only inherits the advantages of model predictive control in directly han-
dling constraints and good optimization performance, but also has the characteristics of distributed control
framework with less computational burden, high flexible, good error tolerance and no global information

requirements [ 3, 4. Using distribute predictive control, the future state information of each subsystem is
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able to feed into its interacted subsystem-based MPC before satisfying the versatile control objective, e. g.
large lag system, and more restricting control performance requirements. The advantages of distributed
predictive control are as follows.

(1) Its underlying ideas are easy to understand: The distributed predictive control is the distributed im-
plementation of a set of predictive controllers, and these predictive controllers consider the feed forward in-
formation from the predictive controllers which correspond to the subsystems they interacted with.

(2) The local predictive control can deal with equipment and safety constraints in routine.

(3) The local predictive control handles multivariable control problems naturally. It is more powerful
than PID control, even for single loops without constraints. It is not much more difficult to tune, even on
difficult loops such as those containing long-time delay.

(4) It allows operation closer to constraints compared with conventional control, which frequently leads
to more profitable operation.

(5) Since the centralized predictive control is decomposed into many small-scaled predictive controllers,
the computational efforts in each small-scaled predictive control are less than those used for solving the
centralized predictive control.

(6) If one or several errors occurred in a subsystem, the other subsystem-based predictive controllers are
able to go on with their work without any disturbance. It has good error tolerance.

(7) If new subsystems are added to the current system, it is not necessary to modify every local predic-
tive control. What should be done is just alter the predictive control whose corresponding subsystem is in-
teracting with the newly-added subsystems. The distributed predictive control owes high flexibility to the
system structure.

(8) The plug-in and plug-out are also able to be realized if a suitable algorithm and an appropriate pro-
gram are designed.

Due to these advantages, the distributed predictive control gradually takes the place of centralized pre-
dictive control for plant-wide systems. However, the optimization performance of distributed predictive
control, in most cases, is not as good as that of centralized predictive control [3—97]. Thus, many differ-
ent coordinating strategies are proposed to solve this problem [3—18]. In most cases, the coordinating
strategies are very important for the performance of the closed-loop systems.

To improve the global performance of the DMPC, several coordination strategies have appeared in the
literature, and can be classified according to the information exchange protocol needed and the type of cost
function which is optimized [ 19]. There are two classes of distributed predictive controls if we catalog the
distributed predictive control by information exchange protocol-nom-iterative algorithm and iterative algo-
rithm.

(1) Normriterative-based algorithm: in this kind of distributed predictive control, each local predictive
control only communicates once with other local predictive control within every single control period, and
solves the local control law once in a control period [11, 18, 20, 217.

(2) Tterative-based algorithm: this kind of distributed predictive control assumes that the network com-
munication resources are abundant for supporting each local predictive control communicating with other
interacted local predictive control many times in a single control period. And the time taken in communica-
ting is so little that it could be ignored comparing with the control period. Each local predictive control
solves its optimal control law based on the presumed control sequence before transforming this control law
to its interacted local predictive controllers. After that, each local predictive controller solves the new opti-

mal control law based on the optimal control laws of its neighbors tackled last time. This process will then
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be repeated until the iteration stopping conditions are satisfied [5, 10, 22—24 ].

The nonriterative algorithms consume less communication resources than iterative algorithm, and have a
faster computation speed in comparison with the iterative algorithm. The iterative algorithms are able to a-
chieve better global performance than the non-iterative algorithms.

If we catalog the distributed predictive control by the type of cost function each local predictive control
optimized, there are three types of distributed predictive control methods: Local Cost Optimization MPC
[25], Cooperative Distributed MPC [ 22] and Networked Distributed MPC [ 26 ].

(1) Local Cost Optimization Based MPC (LCO-DMPC) ; Distributed algorithms where each subsystem
based controller minimizes the cost function of its own subsystem [ 25 ].

N—1
Tk = | xe+N) 5+ D) (Il x e+ 4 + | wik+9 [k ).
—0

When computing the optimal solution, each local controller exchanges state estimation with the neigh-
boring subsystems to improve the performance of the local subsystem. This method is simple and very con-
venient for implementation. An extension of this stabilizing DMPC with input constraint for nonlinear con-
tinuous systems [ 27, 28], and a stabilizing DMPC with inputs and states constraints [ 29 ] also have been
reported.

Xi [30] developed an iterative algorithm for distributed MPC based on Nash optimality. The whole sys-
tem will arrive at Nash equilibrium if the convergence condition of the algorithm is satisfied.

(2) Cooperative Distributed MPC (C-DMPC): To improve the global performance, distributed algo-

rithms, where each local controller minimizes a global cost function were proposed [ 8, 10, 18, 22, 317.

Tk = D11k,
/%'P

In this method, each subsystem-based MPC exchanges information with all other subsystems, and some
iterative stabilizing designs proposed which take advantage of the model of whole system are used in each
subsystem-based MPC. This strategy may result in a better performance but consumes much more commu-
nication resources, in comparison with the method described in LCO-DMPC.,

(3) Networked Distributed MPC with information constraints (N-DMPC) : To balance the performance,
communication cost, and the complexity of the DMPC algorithm, the strategy that each subsystem-based
controller only minimizes its own cost function and those of the subsystems that its own subsystem directly
impacts on was recently proposed [20, 23, 26].

Ttk = DT,k

i€P,
where P, = {j:j € P-i orj =1} is the set of subscripts of the downstream subsystems of subsystem, and
that is the region impacted on by subsystems. The resulting control algorithm is termed as an impacted-re-
gion cost optimization based on DMPC (ICO-DMPC) [32—34] or network distributed MPC (N-DMPC)
with communication constraints. It could achieve a better performance than the first method, and its com-
munication burden is far less than the second method. Clearly, this coordination strategy same as reported
before [20, 23, 26 ] is a preferable method to trade-off the communication burden and the global perform-
ance.

The methods described in [ 27, 35 ] are proposed for a set of decoupled subsystems, and the extension of
[27] could handle systems with weakly interacting subsystem dynamics [ 28]. There is no absolute priority
among these different distributed predictive controllers. We could select different algorithms according to

their purpose on employing control system.
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2 Preliminaries

Information network

Field plant

Figure 1 The schematic of distributed systems.

The distributed system (Figure 1) is composed of many interacting subsystems, each of which is con-
trolled by a subsystem-based controller, which in turn is able to exchange information with other subsys-
tem-based controllers. Suppose that the distributed system § is composed of m discrete-time linear subsys-
tems §; » i EP ={1,2,*+.m} andm controllers G , i EP = {1,2,+-+,m} . Let the subsystems interact with
each other through their states. If subsystem S is affected by §;i €P j €P , subsystem §; is a down-
stream subsystem of subsystem &, and subsystem & is an upstream system of §, . Let P+ denote the set of
the subscripts of the upstream systems of §: , and P-: the set of the subscripts of the downstream systems
of §;. Then, subsystem §: can be expressed as:

x (k+1) = A, x, () +B, w,()+ D) (A, x, (&) + B, u ().
jepr (D
y:(k+1) = C; x; (k) +C; x;(k),
where x, (k) €R" , u;(k) €lfi CR" , andy, (k) €R" are respectively the local state, input and output
vectors, and 4 is the feasible set of the input u,(k) , which is used to bound the input according to the
physical constraints on the actuators, the control requirements or the characteristics of the plant A. A non-
zero matrix A , that is, j €P+ , indicates that S is affected by §, . In the concatenated vector form. the
system dynamics can be written as:
x(k+1) = Ax(k) + Bu(k), 2
y(k+1) = Cx(k),
where
x(k) = [Xf(k) x; (k) - X;f;(k)f eR"™,
u(k) = [ulT(/e) uj (b)) e ui(k)]T cUC R™,
y(k) = [le(/e) ys (k) e yfl(/e)]T ER™,
are the concatenated state, control input and output vectors of the overall system S, respectively. Also,
u(k) €y, = Yar X Yz X = X UYm . A, B and C are constant matrices of appropriate dimensions and are de-
fined as follows:
Ay, A, Ay, B
Ay A, e Ay,

Aml AmZ o Amm
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B = . . . . ’
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C.. C,. e G
L J
If there is only the state interacting term, we call the model state interacted model and it can be ex-
pressed as:
x(k+1) = A x, (&) +B; w(k)+ > Ay x, (k). (3)
i€eP,
Similarly, if there is only the input interacting term of input, we call the model input interacted model
and express it as;
X (E+1) = A; x,(b)+B; w(k)+ > By u (k). 4
ieP!
In fact, the state interacted model can be transformed into the input interacted model if a suitable trans-

formation is employed. And shared states (states which belong to both interacted subsystems) are defined.

3 Unconstrained distributed MPC

3.1 The local cost optimization based distributed MPC
The control objective of this system is minimizing a global performance index at time 4 under the distrib-

uted control framework, and
m P

M
T =220 | wk+D =3+ 1§ + 25 lawtk+i=D %7, (5)
=1

i—1 bi=1
where Q; and R; are weight matrices, P,M €N are predictive, horizon, and control horizon respectively,
and P=>=M, y¢ is the set-point of subsystem §: , while Au;(#) = u; (k) —Au;(k—1) is the input increment
vector of subsystem §:. For the large scale system considered here, the global performance index (5) can

be decomposed in terms of the local performance index for each subsystem S;, i=1, 2, =+, m [36].
P

M

T = D0 | yik+1|b) —yiGe+1[k g + D) law+i—1]6 | k. (6)
=1 =1

The local control decision of S; is computed by solving the optimization problem min J,; (%) with local in-

put/output variables and constraints in the distributed MPC based on the state (or input) estimations of
neighbors at time £—1.

To predict the future state of current subsystem S;, the only information that each controller C;, i=1,
2, +-+, n, needs is the future behavior of the subsystems S, controlled by agents ; € P+ . Similarly, C;
should broadcast the future behavior of the local variables only to the agents €, €P-: . Then the states and

outputs of the downstream neighbors in /-step ahead can be predicted by

14 l

X, (F+1] k) =A x, (k| k) + E A7'B w (k1 —s | k) + 2 A wik+1—s | k—1),

s=1 s=1 7
{5’;(k+l B =C, X, (k+1 | k) + v, (k1| k—1.

Above all, the optimization problem for each subsystem-based-and-l.ocal-cost optimization-based MPC in
each control cycle can be concluded as:

Problem 3. 1.

For each independent controller C;, i=1, 2, -+, n, the unconstrained LCO-DMPC problem with predic-

tion horizon P and control horizon M, M<CP at time &k becomes the following optimization problem:
P

min ji(k) = Z

AU, (M | &) =1

M
| YL =yt e + D) [ aw+1—=1]8) |} (8
=1
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fori=1, 2, «-+, m, subject to constraints:

14 !
X k1B =A X (B4 DA Biwk+i—s |+ D AT wik+1l—s|k—1. (9

=1 =1
Y+l k) =Ci x;(k+1 D+ V,EF+IL| =D, (10)
where
AU EM|E) = {Aw (k| B)ssAu(k+M—1|k)}.
Each controller C; is composed of three parts: an optimizer, a state predictor and an interaction predic-

tor. At time k£, based on the exchanged information, the interaction predictor of MPC controller C; esti-

mates the future interaction sequence over the prediction horizonw,(k+{—1 | ,k—1), =1, 2, -+, P.
Then, combining with the local state measurement of x;(k), problem 3.1 can be solved by the optimizer.
The optimizer computes the optimal manipulated variable increments sequence A U/ (£, M| k) over the con-
trol horizon. The first element of AU* (A+M | k), Au;(k | k) is selected and u; (k) =u; (k—1) +Au, (k| k)
is applied as control input to subsystem S;. Finally, the state predictor computes an estimation of the fu-
ture state trajectory over the prediction horizon by (9) and broadcasts it and the optimal control sequence
AU* (k+M|k) over the control horizon to its output neighbors S;, j €P-i . At time &, the interaction pre-
diction part of each controller uses this information to estimate the interaction predictions w;(k+7—1 | k)
and the whole procedure is repeated.

It should be noticed that at Problem 3. 1, the future interaction sequences are substituted by the estima-
tion of the future interaction sequence w;(k+[—s | k#—1) and v;(k+ [ | k— 1) based on the information
broadcasted at time £#—1 from the agents C; €P+; , because at time &, the predictions w,(k+[—s | k) and

v; (k41| k) are unknown for the controller C;. That is why equations (9) and (10) in controller C; have

the current formation.

Unconstrained LCO-DMPC Algorithm
If the desired output Y¢ (k£ +1,P | &) is provided, the LCO-DMPC algorithm for subsystem-based MPC in controller G at
each time instant k is as follows.

Step 1 Communication and Interaction calculation
e SendU;(k—1,M | k—1) and 5(, (k,P | k—1) to its downstream neighbors’ controller C,,j €P-; .

» Get the estimation of the future state trajectories X, (k,P | k—1) and control inputs U; (k—1,M | #—1) from its up-
stream neighbors’ controller C;,; € P+ through network information exchange.
+ Set the desired trajectory Y/(k -+ 1,P | k) over the horizon P according to the MPC’s configuration.

* Get the measurement of x; () through field instruments or a designed observer.
« Build X(&.P | #—1) and U(k,P | k) by combining the local state trajectory 5(, (k,P | k—1) and control input U(k,
P | £) with the acquired upstream neighbors’ information of 5(, (B Pl E—1) Uj(k—1,M | k—1), j €P4; , and compute the

corresponding predictions of the interactions:

W, (hPlhk—1) = AXEP|h—1D+BUE—1.M|E—1,

V.(b.P| k=1 = CX&.P[E—1.
Step 2 Compute control law and apply it

* Compute the optimal control sequence. That is:

U kM| &) =T, u,(k— 1D +T K, [Yﬁf(/anl,P | &) — 2,(/e+1,P | k).
» Apply the first element u; (2) of the optimal sequence U; (k,M | k) as control input to physical system §; .
Step 3 Estimate the future state

* Compute the estimation of the future state trajectory of subsystem S; over the horizon P by the following equation:

X, (k+1,P | k) = S[AZ (k| k) +B U GkM| k) +A X(EP|k—1+BUG—1,M| k—1).
Step 4 Go to next time instant
At timek+ 1, letk+1— %, then go to Step 1 and repeat the algorithm.
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According to the fault tolerant control [ 37 ], the LCO-DMPC control solution is able to manage also e-
ventual subsystem faults. For example, for controller C;, if a fault occurs and leads a structural or para-
metric change on model of subsystem S;, then by model based techniques [ 38], controller S; detects the
occurred fault, and then determines the new configuration of LCO-DMPC and broadcasts the new configu-
ration to its downstream neighbors controller C;, j €P_,. The controller C; could switch to a new MPC
policy according to the configuration and go on control its corresponding subsystem. Here, the local fault-
detection system has to have the functions of fault detecting, fault type determining and automatic selec-
ting configuration. It should also be able to inform the downstream neighbor controller of the new configu-
ration and go on control its corresponding subsystem.

The stability condition of the entire closed-loop system is deduced by analyzing the entire closed-loop
systems’ dynamic matrix which could be specified on the basis of the closed-loop solution.

3.2 Distributed MPC strategy based on Nash optimality

For large-scale systems, to avoid the prohibitively high on-line computational demand and improve the
global performance compared with the non-iterative LCO-DMPC, this section will introduce the DMPC
control based on Nash optimality.

It is assumed that the behavior of the whole system is described by m subsystems and the nonlinear per-
formance function L is decomposable in the distributed system. The local performance index for the 7, con-

troller can be expressed as:

P
min J, = DLy (k+j

Au; g (kIR

YA w (k| k)G = 1y am) s (1)

i=1
where L; is the nonlinear function of y;(k+j | )+ Au; (k| k) . It indicates the global performance index
of the whole system is:
min] = > J,. (12)
i=1
At time instant £, the future predictive output of the ith controller can be expressed as:
Yik+jlB) =Ly (B v Au (k| B) sy A,k | )G = 1,+,P). (13)
It can be concluded that the global performance index can be decomposed into a number of local perform-
ance indexes, but the output of each subsystem is still related to all the input variables due to the input
coupling. Such distributed control problem with different goals can be resolved by means of Nash optimal
concept [39]. In concrete, the group of control decisions u" (¢) = {ui\"(t) yee ) (1) \ is called the Nash op-
timal solution if for all u;, the following relations are held:
Jr (lliV yeeenY e ulY )g 7. (lli\" RETENN | AARTR (P | PAPRPRTTI | o ). (14)
If the Nash optimal solution is adopted, no controller changes its control decision ui because it has a-
chieved the locally optimal objective under the above-mentioned condition; otherwise, the local perform-
ance index Ji will degrade. Each controller optimizes its objective (local performance index) only using its
own control decision, assuming that other controllers’ Nash optimal solutions have been known. That is:
nlin]; NG - (15)

Employing (15) to obtain the Nash optimal solution ui of the ith subsystem, it is necessary to know other
subsystems Nash optimal solutions u} (j # i) , so that the whole system could arrive at Nash optimal equi-
librium in this coupling decision process. By Nash optimal equilibrium the global optimization problem can
be decomposed into a number of local optimization problems.

An iterative algorithm is developed on the basis of the previous work [ 40 ] to seek the Nash optimal solu-
tion of the whole system at each sampling time. Since the mutual communication and the information ex-
change are adequately taken into account, each controller can resolve local optimal problems provided that

the other subsystem-based MPCs optimal solutions have been known. Then each subsystem-based MPC
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compares the newly computed optimal solution with the one obtained in last iteration and checks if the ter-
minal condition is satisfied. If the algorithm is convergent, all the terminal conditions of the m agents will
be satisfied, and the whole system will arrive at Nash equilibrium at this time. This Nash-optimization
process will be repeated at next sampling time.

To avoid the prohibitively high online computational demand, the MPC is implemented in distributed
scheme with the inexpensive controllers in the network environment. These controllers can co-operate and
communicate with each other to achieve the objective of the whole system. Coupling effects among the a-
gents are fully taken into account in this scheme, which is superior to other traditional decentralized con-
trol methods. The main advantage of this scheme is that the on-line optimization of a large-scale system
can be converted to that of several small-scale systems. Thus, it can significantly reduce the computational

complexity while ensuring satisfactory performance.

Step 1: At sampling time instant k. each controller makes initial estimation of the input variables and announces it to the
other controllers, let the iterative index [ = 0.

Step 2: Each controller resolves its optimal problem simultaneously to obtain its solution A w/y (k) (i = 1,++,m)

Ad () =[Ad R AdG+D A uGe+M—D] G =1,-,m)

Step 3: Each controller checks if its terminal iteration condition is satisfied. That is, for the given error accuracye; (i =1,

«,m) , if there is:
[ Aufd () —AuX ) || <& G=1,m)

and all the terminal conditions are satisfied, then end the iteration and go to step 4; Otherwise, let/ = [+ 1, A u' (k) =
Auw'y(k)(i = 1,++,m) , all controllers communicate to exchange this information, and take the latest solution to step 2.

Step 4. Compute the instant control law

Auw(R)=[1 0 0 -« 0JAwWNRG=1,",m)

and take them as the controller outputs of each agent.

Step 5: Move horizon to the next sampling time. That is, 2+ 1 — % and go to step 1 to repeat the above process.

3.3 Cooperative distributed MPC

As is introduced in the previous section, the optimization performance of the closed-loop system under
the control of Distributed Predictive Control is usually not as good as that under the control of centralized
Predictive Control, especially when the strong coupling exists among subsystems. As presented above, if
the iterative algorithm is employed in solving each subsystem-based Predictive Control, in which, each
subsystem controller communicates several times with its neighbors and solves the Quadratic Programing
problem several times in each control period, it improves the global performance through minimizing the
computational error, which refers to the difference between the input sequence calculated at previous itera-
tive and the input sequence calculated in current computation. However, the research direction of the
whole optimization problem is not the gradient of the entire cost function, and the optimal solution calcu-
lated by this method is Nash Optimality instead of the global optimality.

Is there any other strategy to improve the global performance of closed-loop system under the control of
Distributed Predictive Control Du [40] and Venkat [41] proposed a strategy where each subsystem-based
Predictive Control optimizes not only the cost function of the subsystem it corresponded to but also that of
the whole system to improve the performance of entire closed-loop system. The advantage of improving the
optimization performance of entire closed-loop system has been proved [ 10, 22, 31 ], and some applications
are also presented to validate this strategy [22, 42, 43]. To introduce the concept more clearly, the un-
constraint DPC [ 18, 317, both iterative and non-iterative algorithm, based on this coordination strategy
are presented. In this strategy, each subsystem-based MPC should have access to the required information
of all subsystems for calculating its optimal solution.

(1) Nomnriterative cooperative distributed MPC; Assumptions:

e Controllers are synchronous, since the sampling interval is usually rather long compared with the
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computational time in process control;

e Communication channel introduces a delay of a single sampling time interval, since an instantaneous
data transfer is not possible in real situations;

e Controllers communicate only once within a sampling time interval;

e Local states x;(k), i=1, 2, **-, m, are accessible.

Since the optimal control decision of S; affects, or even destroys, the performance of other subsystems,
the performance of other subsystems should be considered in finding the optimal solution of S;. To im-
prove the global performance of whole closed-loop system, the following so-called global performance in-

dex is adopted in each C;, i=1, 2, =+, m:
_ P M
Jo =D | ¥+ —y G+ I+ D) lawt+i—1[k |k - (16)
- =1

!
where Q=diag{Q;, Q., ***, Qm}. It should be noticed that Au; (k4 I{+1|k) is excluded in the perform-
ance index, since it is independent of the future inputs sequence of S;.

Since the state evolution of other subsystems is affected by u; (k) after one or several control periods, to
improve the prediction precision, this influence is considered in C; when predicting the future states of all
subsystems. In addition, due to the unit delay introduced by the network, the information of other subsys-
tems is available only after one sampling time interval. Therefore, in C;, the states and outputs of all sub-

systems in [-step ahead are predicted by
X (E+1l+1|k) =ALx(kh)+A'L, x(k|k—1)
l 14
+ VAT B kB4 D) DA B w (R

s=1 JE (Lommy 5=1
JFL

k=1, an

V4141 =Cx (k+1+1]k),
where
L,‘ — [Onsz;illnu In, On‘“><2;tl+]n“];

L= diag Iy, 0, I s
B, =[B!, Bj - B,]".

It should be noticed that the input of this neighborhood model is still the input of S; and the inputs and
states of other subsystems are regarded as disturbances. The estimations of future states and outputs of all
subsystems (except S;) are only used in controller C;, and these estimations are different from those esti-
mated by the controller C; itself.

On the basis of the closed-form solution, the closed-loop dynamics can be specified and the stability con-
dition can be verified by analyzing the closed-loop dynamic matrix. In C-DMPC, the initial states and fu-
ture control sequences of other subsystems at time % are substituted by the estimations calculated at time
k—1. If there is disturbance, model mismatch or set point change, the future input sequences of subsys-
tems calculated at time % are not equal to those calculated at time #—1, which induces estimation errors of
future states between two optimization strategies. This affects the final performance of the closed-loop sys-
tem. Although this difference exists, the optimization problem of C-DMPC is still very close to that of cen-
tralized MPC.

(2) Distributed Predictive Control based on Pareto Optimality: The main idea of this method is that:
each subsystem-based MPC communicates with each other many times in a control period and computes the
optimal control law through iteration; each subsystem-based MPC optimizes the cost of entire closed-loop

system before improving the global performance of closed-loop system.
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Step 1. At time k., each subsystem transmits the initial predictive value y,, (k) to other subsystems and receives the initial
predictive values y;,, (k) (j =1,2,-=-,m,j 7 i) from other subsystems. Then it sends the estimator of the control law to oth-
er subsystems. Let the iteration number . = 0 .

Step 2. Each subsystem computes the optimal problem in parallel with last optimal control laws from other subsystems.
The constraints are the same as mentioned above. We can get the optimal solution Au/™ (k) (i = 1,2,+++.m) at the iteration.

Step 3. Check the convergence condition of all the subsystems. If the precisione; (i = 1,2,++,m) of all the subsystems
meets the condition

[ Au™ () +au) || <e-
we can get Au* (k) = Auw' (k)i = 1.2,-+,m) and this iteration ends and it goes to step 4. Otherwise, let A u! (k) =
Adu™ (R =1,2,,m),l = [+ 1and go to step 2.
Step 4. Compute the control law at the time £
Aw (k) = 10074 wiy (k)i = 1,2, .m
Step 5: Let £+ 1 — k and go to the step 1.

During the optimal control time, each subsystem can get a local MPC control law without considering
the coupling relationship between subsystems. The local MPC control law will be taken as the iteration ini-
tial value.

The onrline optimization of a large-scale system can be converted to that of several small-scale systems.
It can thus significantly reduce the computational complexity while keeping satisfactory performance.

3.4 The networked Distributed MPC

The major advantage of distributed model predictive control is that it has the characteristics of good flex-
ibility and error tolerance. This characteristic is based on the fact that the controllers relevant are inde-
pendent. It means that the number of systems that each subsystem based MPC communicates with de-
creased, which will improve the flexibility and the ability of error-tolerance of the whole closed-loop con-
trol system. In addition, in some fields or processes the global information is unavailable to controllers (e.
g. in multi intelligent vehicle system) for the management or the system scale reasons. Thus, designing a
DMPC which could significantly improve the global performance of the closed-loop system with limited in-
formation structure constraints is valuable.

We will propose a coordination strategy which could improve the global performance using appropriate
network resources, where the optimization objective of each subsystem-based MPC considers the perform-
ance of corresponding local subsystems and its directly impacted subsystems. In online optimization prob-
lem, each local controller takes into account not only the impacts coming from its neighbors but also the
impacts applied to its neighbors for improving global performance.

For the non-iterative algorithm, the closed-loop stability analysis is also provided for guiding local MPCs
tuning. Moreover, the performance of closed-loop system using proposed distributed MPC is analyzed and
the application to accelerated cooling and controlled (ACC) process is presented to validate the efficiency of
this method. For the iterative algorithm where each subsystem based MPC exchanges information several
times when it solves its local optimization problem, the optimality of the iteration based networked MPC
algorithm is analyzed and the nominal stability is derived for distributed control systems without the con-
trol and output constraints.

(1) Nonriterative Networked DPC: Since the state evolution of downstream neighbors of subsystem S; is
affected by the control decision of subsystem S;, the performance of these neighbors may be destroyed by
improper control decisions in some cases. To solve this problem, the so-called Neighbourhood optimization

[23, 26] is adopted and the performance index is expressed as:

J o= 31,

N
jEN;

(18

P M
= D [2 I Herp =yt 1+ lantri—1o k]
Nowt =1 =1 k
Since Aw; (k+1—1]k)(j EP-isj # il =1,-+,M) is unknown and independent of the control decision of
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Si s Au;(k+1—1|k—1) is used to approximate Au,(k+1.—1|k). Then, the performance index becomes

_ P M
T = >0 D01y, Gtk =i+ D 5 + > lawe+1—1]~) |
jep_, i=1 =1

2
R
i

M
+ > X llawG+i—1]k—D |}

jeP_i=il=1

P M
=20 20 Iy ettl) =yl e+l g + > lawk+1—1[k | & + Constant.
jeP_ =1 =1

(19)

The optimization index J;(k) considers not only the performance of subsystem S; but also that of the
downstreamneighbors of S;. The impacts of the control decision of S; to §; €P—; are fully considered in the
neighborhood optimization, and therefore the global performance improving is guaranteed. It should be no-
ticed that the global performance may be further improved by using the optimization objective in each sub-
system, but it requires a high quality and complicated network communication and introduces more com-
plex computation.

In fact, after several control periods, the control decision AU, (k, M|k) affects not only the downstream
neighbors of S; but also other subsystems (e. g. the downstream neighbors of the downstream neighbors of
S;). Here, the interactions with other subsystems except downstream neighbors are neglected. If there is
enough network band-width for employing iterative algorithm, these interactions can also be taken into ac-
count.

It should be noticed that each controller only communicates with its neighbors and its neighbors’ neigh-
bors in ND-MPC. Moreover, if each controller communicates with its neighbors twice within a sampling
time interval, the information of its neighbors’ neighbors can be obtained from its neighbors. That means
only the information exchanging among neighborhood is required by this method. Thus, if one subsystem
fails, the other subsystem unrelated to S; can run normally. The communication loads related to S; are that
S; gets its future states to its neighbors and sends its neighbors’ states and inputs to its neighbors.

(2) Networked DMPC with Iterative Algorithm: As was mentioned, the closed-loop system will achieve
Nash optimality if the iterative algorithm is employed in the local cost optimization based DMPC and the
closed-loop system could obtain Pareto Optimality if the iterative algorithm is employed in the global cost
optimization based DMPC. The iteration could indeed improve the global performance of closed-loop sys-

tem in the distributed control framework.

A e e L

—
—I-D Subprocess | Subprocess —# Subprocess —I-D —#| Subprocess

Subprocess [—#
1 | <|— -1 |a— i | — i+l | "
e =" A
N L2 ¥i Fin Fn

Figure 2 Diagram of a serially connected process.

Step 1. Initialization and communication: At the sampling time instant £ , each subsystem exchanges x, (k) with its neigh-
bors, makes the initial estimate of its local optimal control decision and transmits it to its neighbors by a communicator. Let
the iterative index{ = 0 .

AU = AU ()G =1, ,m)

Step 2. Subsystem optimization: Each subsystem resolves its local optimization problem described in

min J; (k) ‘ AU o Gen, i
AU, pp G S

simultaneously to derive its control decision A U4 (k) .
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Step 3. Checking and updating: Each subsystem checks if its terminal iteration condition is satisfied. That is, for the giv-
en error accuracye; € R , (i = 1,++,m) , if there exists
[ AULY () — AU R || <oy GG=1,m)

and all the terminal conditions are satisfied at iteration /* , then end the iteration, set the local optimal control decision for

each subsystem A UXy (k) = A U,”C,) (k) , and go to Step 4; otherwise, let / = [+ 1, each subsystem communicates to ex-
change the new information A U{!}; (k) with its neighbors, and go to Step 2.
Step 4. Assignment and implementation: Compute the instant control law
AwS (k) = [I,,m 0o - OJAU,*.M%),(:? =1, ,m)

and apply u” (k) = Au (k) + u* (k— 1) to each subsystem.
Step 5. Reassigning the initial estimation: Set the initial estimation of the local optimal control decision for the next sam-

pling time

AU (k1) = AU () (= 1+ 3m)
Step 6. Receding horizon: Move horizon to the next sampling time. That is, #+1-—>% , go to Step 1, and repeat the above

steps.

The on-line optimization of serially connected large-scale systems can be converted to that of several
small-scale systems via distributed computation. It can thus significantly reduce the computational com-
plexity. Meanwhile, information exchange among neighboring subsystems in a distributed structure via
communication can improve control performance, which is superior to traditional decentralized MPC meth-
ods.

Under the network environment, the capacity of the communication network is assumed to be sufficient
for each subsystem to obtain information from its neighbors, so it is possible for each subsystem to ex-
change information several times when it solves its local optimization problem at the sampling time instant.
Furthermore, when the convergent condition is satisfied, the solution to the local optimization problems
collectively will be the global optimal control decision of the whole system. That is, the coordinated dis-
tributed computations solve an equivalent centralized MPC problem.

It has been noticed that the convergence of N-MPC is local. That is to say, whether the distributed com-
putation is convergent is only concerned at the current sampling time instant. The stability analysis in this
section is global. That is to say, the convergence of the distributed computation and stability for distribu-

ted control systems are considered during the whole receding horizon.
4 The design methods of the stabilizing distributed MPCS with constraints

Control design that takes state and/or input constraints into account, whether under the MPC frame-
work or not, is an important and challenging problem. Many methods have been reported [44—467]. Un-
der the MPC framework, closed-loop stability is ensured by judiciously integrating designs of the terminal
cost, the terminal constraint set and the local controllers [44]. In DMPC, the future state sequences of
upstream neighbors, which are calculated based on the solution in the previous time instant, may not be e-
qual to the predictive states calculated by the corresponding subsystem at the current time instant, and the
errors between them are hard to estimate. In addition, in the presence of constraints, the feasibility of
each subsystem based MPC cannot be guaranteed. The remaining part of the optimal control sequence cal-
culated at the previous time instant may not be a feasible solution at the current time instant. It is difficult
to construct a feasible solution in the current time instant. All these make it difficult to design a stabilizing
LCO-DMPC that takes constraints into consideration.

A stabilized LCO-DMPC algorithm is developed, which uses constraints to limit the error between the
future state sequences (or called presumed sequences) of upstream neighbors, which are calculated based

on the solution in the previous time instant, and the predictive states calculated by the corresponding sub-
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system in the current time instant. Then the stability is ensured by judiciously integrating designs of the
bound of the error between presumed state sequence, predictive state sequence, the terminal cost, the con-
straint set and the local controllers.

4.1 The local cost optimization based distributed MPC based on dual mode scheme

Each local controller minimizes its own subsystems cost and uses the state prediction of the previous time
instant to approximate the state sequence at the current time instant in computing the optimal solution. If
iterative algorithm is employed, the Nash Optimality of closed-loop system can be achieved.

Each subsystem-based MPC minimizes the cost function of its corresponding subsystem. More specifical-

ly, the performance index is defined as

N—1

Ty = | xtG+N =[5 +D7 I xG;+sIoIe+ | wtets| oIk (20)
5=0
where Q; = Qf >0, R, =R/ >0and P, =P/ > 0. The matrix P, is chosen to satisfy the Lyapunov equation
ALP A, —P, =——Q, , whereQ, = Q + KI' R K, .
In order to guarantee the stability of DMPC, we consider the following constraints:

SV e NG = xRl B[], = —F s = 1,2, N1, 2D

mm
| xGk+ N[ B —x(E+N|B |, <", (22)

"o m

H X{)(k+5 | k) H P, g H Xf(k+3 ‘ /3) H P, +L9S - 1929"'71\[7 (23)

' " uN Vm
Wk—+s | k) EUirs = 0.1, N—1, (24)
X (k+ N |k €Q:(e/2). (25)

In the constraints above,
m, = maX{number of elements in P+ Lo
iep
@ = max max (Aj. ( (AL A, )T P AL Ay, L= 0,1, N — 1.
e P ieP;
The constants 0 < x < 1 and 0 < £ <1 are design parameters whose values will be chosen in the sequel.

4.2 Cooperative distributed predictive control with constraints

Each subsystem-based MPC optimizes the cost of overall system to improve the global performance. In
computing the optimal solution, it also uses the state prediction of the previous time instant to approximate
the state sequence at the current time instant. This strategy could achieve a good global performance in
some cases, but it reduces the flexibility and increases the communication load. We call it global cost opti-
mization based DMPC here, and the Pareto Optimality of the closed-loop system is obtained by this meth-
od.

The consistency constraints, which limit the error between the optimal inputs sequence calculated at the
previous time instant, referred to as the presumed inputs, and the optimal inputs sequence calculated at the
current time instant to a prescribed bound, are designed and included in the optimization problem of each
subsystem-based MPC. Moreover, a dual mode predictive control [44, 47 ] strategy is adopted. These con-
sistency constraints and the dual mode strategy guarantee that the remaining part of the solution at the pre-
vious time instant is a feasible solution if there is a feasible solution at initial time instant. They also guar-

antee the asymptotical stability of the closed-loop system.

l
D38 w kR [ —u b [ R D = = 12 N (26)
h=0

wk+1—11 k) EYisl=0,1,,N—1; 27
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X (k+N |k €Qlee). (28)

In the constraints above,
B = max (A ((A'BD)TPA'B)? .0 = 0,1, .N— 1.
iep

Amax(\/ﬁ)g 17K.O< 17IC< 1.
The constant 0 <<x <1, 0 <Za<C0.5 and y > 0 are design parameters whose value will be chosen in the se-
quel.

Equation (26) is referred to as the consistency constraints, which requires that all predictive manipula-
/

/. is a feasible

ted variables remain close to the presumed sequence. It is a key equation in proving that x
state sequence at each updating.

Note that the terminal constraint in each optimal control problem is Q(ae) . 0 < a < 0. 5. In the analysis
presented in the next section, it is shown that tightening the terminal set in this way is required to guaran-
tee the feasibility properties.

A stabilizing distributed implementation of MPC is developed for dynamically coupled spatially distribu-
ted systems subject to decoupled input constraints. Each subsystem-based MPC considers the performance
of all subsystems and communicates with each other only once at a sampling time.

4.3 A networked distributed predictive control with inputs and information constraints

In an effort to achieve a trade-off between the global performance of the entire system and the computa-
tional burden, an intuitively appealing strategy is provided, where each subsystem-based MPC only consid-
ers the cost of its own subsystem and that of the subsystems it directly impacts on.

Under the DMPC framework, Dunbar [ 28] provided a design for nonlinear continuous systems, which
used constraints to limit the error between the future state sequences (or called presumed sequences) of
upstream neighbors, which were calculated based on the solution in the previous time instant, and the pre-
dictive states calculated by the corresponding subsystem in the current time instant. Then the stability was
ensured by judiciously integrating designs of the bound of the error between presumed state sequence, pre-
dictive state sequence [ 28], the terminal cost, the constraint set and the local controllers [47]. Farina
[ 29 ] gave another design for linear system, which used a fixed reference trajectory with a moving widow to
substitute the presumed state/input of upstream neighbors used by Dunbar [ 28]. Both methods are de-
signed for DMPC in which each subsystem-based MPC optimizes the cost of the corresponding subsystem
itself. As for the DMPC which uses the global cost function, some convergence conditions are deduced if
using iterative algorithms. Then the distributed problems can be reformulated into a centralized problem,
and the stabilizing DMPC can be designed with a similar method of centralized MPC. For the coordination
strategy used here, there is no global model that can be used. And except that there are errors between the
presumed state/input sequences and predictive state sequences of upstream neighbors, the predictive state
sequences of downstream neighbors calculated by current subsystem may not equal those calculated by the
downstream neighbors themselves and these error are hard to be estimated. In the presence of constraints,
the remaining part of the optimal control sequence calculated at the previous time instant may not be a fea-
sible solution at the current time instant. All these make it difficult to design a stabilizing N-DMPC that
takes constraints into consideration.

Considering subsystem §: , lete > 0 and the update time be #>1 , givenx;(k), x7 (k) and x7(k+s| k),
s=1,2,sN,andu;(k+s| k), s=0,2,---,N—1, find the control sequence uf (k+s | £):{0,1,--, N

— 1} — I4; that minimizes
N—1
Ji = >0 I b+ N 15+ 25 (20 I xtCe+slo g + | we+sio
i€eP,; =0 e P,

k). 29
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subject to the following constraints:

s ~ (1 — 8k
Wk LR —uw kLR ], s s =1,2,,N—1, (30)
Z[:O‘B ! ’ 2 N/ mm,
e IR R — X L B <8 =1,2, N—1, (31)
2171 : 2 mm,
| X (k+ Nk —x,(k+N |k |, <", (32)
"o m
| xtCk—+s| k) |lp <l X(k+s|k)||lp +——,5s=1,2,-,N, (33)
' LN
w+s|k eyi,s=0,1,-,N—1, (34)
X (E+ Nk €Q;(/2),] EP.. (35)
In the constraints above,
m, = mgpx{number of elements in P—; Yo
ie
m, = maX{number of elements in P+ b
e P
a; = max max{/\é}x((L],, ALADT P, L, Al Af) Yo
ieP jeP,
. o o
= max max Az, ((L;; AAB:)T P, L;; A B; y 1,
B - je”P,{ ( )}
where
Li.j — |:0”~XJ>< Z n, qu 07'~¢j>< E v [ }
and §;, 8/ and S are respectively the (m;; — 1™, (m,; —1)™ and (m,,; —1)™ subsystem in the down-

stream region of §: . Finally, the constants 0 < x<C1 and 0 <Z £<1 are design parameters whose values will
be chosen in the sequel.

Both the control decision and performance of the closed-loop system using N-DMPC are very close to
those using centralized MPC. Furthermore, there is less computation demand using the N-DMPC than u-
sing centralized MPC. Thus, the N-DMPC is an effective method which could guarantee global perform-
ance improvement with higher computational speed and less communication burden. Compared with the
method proposed in the last subsection, both the optimization index and the consistent constraints are dif-
ferent. In the optimal problem, the constraints (30) are necessary since the estimation error cannot be ex-
pressed by the states sequence. In addition, the terminal constraint should bound both the final states of
corresponding subsystem and that of the subsystems it directly impacted on.

It should be noticed that, with the increasing of the number of the downstream neighbors each subsys-
tem-based controller covers, the cost consumed by communication among subsystems will become even
higher, and the network connectivity of the entire system will become more complex. When the time con-
sumed by communicating becomes so much that it cannot be ignored compared with the control period, the
performance of the entire system will be negatively affected more or less. And the increasing of network
connectivity will inevitably violate the error tolerance capability of the entire control system. This is un-
desired in the distributed control framework. Thus, the number of the downstream neighbors of each sub-
system should not be too big when the network bandwidth is limited or not big enough.

It should also be noticed that a general mathematical formulation is adopted in the N-DMPC algorithm
and its analysis. The N-DMPC and the resulting analysis can be used for any coordination policy mentioned
in Section II with a redefinition of P; . Thus it provides a unified framework for the DMPCs which adopts

the cost function based coordination strategies.
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5 Simulation example

5.1 Numerical Validation-Accelerated cooling process test rig
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Figure 3 ACC process for the middle & heavy plate.

ACC process, simplified in Figure 3, is used to cool a metal plate from initial temperature around 750—

800°C down to the lowest temperature in the range of 450—560°C. A constant coolin

required in ACC, which helps a lot to strongly improve the mechanical characteristics of the corresponding

products. The cooling area is partitioned into three sections: air cooling section, wat

re-reddening section, labelled A, B and C, respectively. Fifteen cooling header units are uniformly spaced

along section B. The number of cooling header units in operation (N), and the water flux of each cooling

unit (F) can be adjusted separately. The temperature drop is caused by the heat radia
C, and caused by both radiation and water cooling in section B [48]. Four pyromet
positions of 13.5, 58. 6, 89 and 109. 5 m, respectively. The temperatures of the pl

section are measured by soft-sensors.

As for ACC process, the proposed N-DMPC is adopted in this work. As shown in Figure 4, each sub-
system is controlled by a local MPC. As for the subsystems in which the corresponding cooling water head-

er unit is closed, the local MPC is substituted with a predictor. The predictor estimat

corresponding subsystem and broadcasts the estimations to its neighbors [49 ].

g curve of the plate is
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Figure 4 Control strategy of ACC.
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5.2 Numerical Validation-Operation optimization of multi-type cooling source system based on distributed
model predictive control

This section proposes a hierarchical distributed MPC strategy, which builds an economic model of the e-
lectric refrigerator and ices storage tank, and gets steady power states and optimal set point of each electric
refrigerator and ice storage tank under optimal conditions by using mixed integer programming. Then it u-
ses DMPC to make sure that each electric refrigerator and ice storage tank can track the upper optimal set

point as soon as possible once the total power can track predictive load.

Cooling load Cooling load Cooling load Cooling load
(High floors) (Middle floors) (Middle floors) (Lower floors)
A A
T Water cooling network T
Large power — . — Smnia'll_|-)owcr )
Conventional | xchanges Conventional
refrigerator V3 refrigerator

T

T V4

V2

Ice storage tank

Dual Mode | VI
Chiller

Figure 5 Structure of joint cooling system.

A typical multi-type cooling system is shown in Figure 5. The valves between the exchangers, ice stor-
age and the dual mode electric refrigerator are used to control the switch of the working mode. Figure 6 is
the whole control strategy structure of joint cooling system, where DR refers to the dual mode refrigerator
and CR refers to conversational refrigerator. The single-pole double throw switch in the dynamic optimiza-
tion level is used to choose the air-mode electric refrigerator controlled by the DMPC, and then the disa-
bled electric refrigerator or ice-mode electric refrigerator is neglected. The virtual network is the data

transmitting channel for MPC subsystems.

Equipments’ :
T Power price

parameters Economic
l l optimization
layer

Predictive
load

Economic optimization

Sates and set point of very refrigerator

S VR U VO VU O
g R g O O O ==+

layer
MPC MPC MPC MPC MPC MPC

Ice storage

CRI1 CR2 CR1 DR1 DR2 DR3
tank

Figure 6 Control strategy of joint cooling system.

Above all, for the MPC controller of the th subsystem the optimal problem form is:
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6 Conclusion

In this paper, some significant theory and application results of DMPC were reviewed. From the distrib-
uted systems with constraints or not, different algorithms to handle related conditions were introduced. In
the end, two examples were listed to show the feasibility of proposed algorithms. Moreover, the proposed
algorithms have advantages and disadvantages; it needs more research on the DMPC to pursue better per-

formance.
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